Spin-orbit coupling in fluorinated graphene
نویسندگان
چکیده
We report on theoretical investigations of the spin-orbit coupling effects in fluorinated graphene. First-principles density functional calculations are performed for the dense and dilute adatom coverage limits. The dense limit is represented by the single-side semifluorinated graphene, which is a metal with spin-orbit splittings of about 10 meV. To simulate the effects of a single adatom, we also calculate the electronic structure of a 10 × 10 supercell, with one fluorine atom in the top position. Since this dilute limit is useful to study spin transport and spin relaxation, we also introduce a realistic effective hopping Hamiltonian, based on symmetry considerations, which describes the supercell bands around the Fermi level. We provide the Hamiltonian parameters which are best fits to the first-principles data. We demonstrate that, unlike for the case of hydrogen adatoms, fluorine’s own spin-orbit coupling is the principal cause of the giant induced local spin-orbit coupling in graphene. The sp3 hybridization induced transfer of spin-orbit coupling from graphene’s σ bonds, important for hydrogenated graphene, contributes much less. Furthermore, the magnitude of the induced spin-orbit coupling due to fluorine adatoms is about 1000 times more than that of pristine graphene, and 10 times more than that of hydrogenated graphene. Also unlike hydrogen, the fluorine adatom is not a narrow resonant scatterer at the Dirac point. The resonant peak in the density of states of fluorinated graphene in the dilute limit lies 260 meV below the Dirac point. The peak is rather broad, about 300 meV, making the fluorine adatom only a weakly resonant scatterer.
منابع مشابه
Theory of spin-orbit induced spin relaxation in functionalized graphene
We perform a comparative study of the spin relaxation by spin-orbit coupling induced from adatoms (hydrogen and fluorine) in graphene. Two methods are applied, giving consistent results: a full quantum transport simulation of a graphene nanoribbon, and a T-matrix calculation using Green’s functions for a single adatom in graphene. For hydrogenated graphene the dominant spinorbit term for spin r...
متن کاملSpin–orbit coupling in a graphene bilayer and in graphite
The intrinsic spin–orbit interactions in bilayer graphene and in graphite are studied, using a tight binding model and an intra-atomic E LE S coupling. The spin–orbit interactions in bilayer graphene and graphite are larger, by about one order of magnitude, than the interactions in single-layer graphene, due to the mixing of π and σ bands by interlayer hopping. Their values are in the range 0.1...
متن کاملImpurity-induced spin-orbit coupling in graphene.
We study the effect of impurities in inducing spin-orbit coupling in graphene. We show that the sp3 distortion induced by an impurity can lead to a large increase in the spin-orbit coupling with a value comparable to the one found in diamond and other zinc-blende semiconductors. The spin-flip scattering produced by the impurity leads to spin scattering lengths of the order found in recent exper...
متن کاملTrigonal warping and anisotropic band splitting in monolayer graphene due to Rashba spin-orbit coupling
We study the electronic band structure of monolayer graphene when Rashba spin-orbit coupling is present. We show that if the Rashba spin-orbit coupling is stronger than the intrinsic spin-orbit coupling, the low-energy bands undergo trigonal-warping deformation and that for energies smaller than the Lifshitz energy, the Fermi circle breaks up into separate parts. The effect is very similar to w...
متن کاملSpin-orbit coupling in hydrogenated graphene.
First-principles calculations of the spin-orbit coupling in graphene with hydrogen adatoms in dense and dilute limits are presented. The chemisorbed hydrogen induces a giant local enhancement of spin-orbit coupling due to sp(3) hybridization which depends strongly on the local lattice distortion. Guided by the reduced symmetry and the local structure of the induced dipole moments, we use group ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015